
Metaprogrammable Toolkit for Model-Integrated Computing

Akos Ledeczi, Miklos Maroti, Gabor Karsai and Greg Nordstrom
Institute for Software Integrated Systems

Vanderbilt University

Abstract
Model-Integrated Computing, specifically

Model-Integrated Program Synthesis (MIPS)
environments that include visual model building,
constraint management, and automatic program
synthesis components, are well suited for the
design and implementation of complex computer-
based systems. However, building such an
environment from scratch for each new domain can
be cost-prohibitive. This paper presents a toolkit
that makes the rapid creation of MIPS
environments possible through metaprogramming.

Introduction

Complex computer-based systems are characterized by
the tight integration of information processing and the
physical environment of the systems. Model-Integrated
Computing (MIC) is well suited for the rapid design and
implementation of such systems. MIC employs domain-
specific models to represent the software, its environment,
and their relationship. With Model-Integrated Program
Synthesis (MIPS), these models are then used to
automatically synthesize the embedded applications and
generate inputs to COTS analysis tools. This approach
speeds up the design cycle, facilitates the evolution of the
application and helps system maintenance, dramatically
reducing costs during the entire lifecycle of the system.

Creating domain-specific visual model building,
constraint management, and automatic program synthesis
components for a MIPS environment for each new
domain would be cost-prohibitive for most domains.
Applying a generic environment with generic modeling
concepts and components would eliminate one of the
biggest advantages of MIC – the dedicated support for
widely different application domains. An alternative
solution is to use a configurable environment that makes
it possible to customize the MIPS components for a given
domain.

Model
Interpretation

Model Interpreters

Models

MIPS
Environment

Application
Domain

App.
1

App.
2

App.
3

Application
Evolution

Environment
Evolution

Meta-Level
Translation

Metaprogramming
Interface

Formal Specifications

Model Builder

Figure 1: The Multigraph Architecture

The Multigraph Architecture (MGA), being developed
at the Institute for Software Integrated Systems at
Vanderbilt University, is a toolkit for creating domain-
specific MIPS environments. The MGA is illustrated in
Figure 1. The metaprogramming interface is used to
specify the modeling paradigm of the application domain.
The modeling paradigm is the modeling language of the
domain specifying the modeling objects and their
relationships. In addition to syntactic rules, semantic
information can also be described as a set of constraints.
The Unified Modeling Language (UML) and the Object
Constraint Language (OCL), respectively, are used for
these purposes in the MGA. These specifications, called
metamodels, are used to automatically generate the MIPS
environment for the domain. An interesting aspect of this
approach is that a MIPS environment itself is used to
build the metamodels. Furthermore, metamodels are
created to describe this MIPS environment. These are
called the meta-metamodels. A separate paper [2]
describes the metaprogramming aspects of the MGA in
more detail.

The generated domain-specific MIPS environment is
used to build domain models that are stored in a model
database. These models are used to automatically generate
the applications or to synthesize input to different COTS
analysis tools. This process is called model interpretation.

Model Builder Architecture

Model building is the creation of representations that
(1) describe an artifact using a certain formalism and (2)
satisfy constraints that capture the semantics of the
domain. The MGA supports a primarily graphical
formalism for modeling. It provides a rich set of graphical
idioms for the metamodeler to choose from to implement
the entities and relationships of the application domain.
(Textual representations are also supported when
necessary.) An MGA modeling paradigm always contains
a set of explicit constraints expressed in the Object
Constraint Language (OCL). These define the static
semantics of the domain. Note, however, that selecting a
given graphical idiom introduces additional (i.e. implicit)
constraints into the modeling paradigm. For example, a
simple connection can only express an association
between two objects.

The structure of a model builder is determined by the
services it needs to provide:

• an interface to the human modeler using a well-
defined syntax (graphical, tabular, textual),

• operations that manipulate the models,
• a constraint manager that checks and/or enforces the

semantics of the domain,
• a model database with access mechanisms, and
• an interface for model interpreters to access and/or

manipulate the models.

Metaprogramming configures (1) the metaprogrammable
model builder by assigning semantics to the graphical
idioms it provides and (2) the constraint manager by
assigning constraints (semantics) to the operations. The
overall architecture of an MGA MIPS environment is
depicted in Figure 2.

At the core of the MGA MIPS environment is the
Graphical Model Editor (GME). This component is
responsible for maintaining the model structures and
providing the operations to manipulate them. The GME
coordinates with the other components as well.
Component integration is done using the Component
Object Model (COM).

Different graphical user interfaces are allowed to
access the models. Our own graphical interface supports
all the idioms and operations provided by the GME. A
text-based interface is also supported, but it is inherently
more difficult to use for complex paradigms and/or
models. We plan to provide a table editor in the near
future. It is possible to interface COTS drawing packages
to GME. For a given tool (e.g. Visio or Powerpoint), a

simple layer needs to be implemented that maps the GME
COM interface to that of the COTS package. Depending
on the tool, some graphical idioms or operations may not
be accessible this way.

Model storage is provided transparently by the
database interface to Microsoft Repository or object
oriented databases. Though not strictly a database, OLE
compound storage provides the basic set of functionality
required to store the models. For simpler paradigms and
small to medium size models, this is a satisfactory
solution. It also provides the benefit of not having to
install a large, complex third party database package.

The Constraint Manager has access to the set of
domain-specific constraints provided by the Paradigm
Definition module and the models maintained by the
GME. Checking of selected constraints can be triggered
by certain requested operations, such as connect, close, or
modify Attribute. All constraints can be checked at once
upon explicit request. In addition to the triggering
condition, a constraint also has a context, a priority, and
an OCL expression associated with it.

Graphical
Model Editor

Constraint Manager

Interpreter #1

Interpreter #N

Database Interface

GUI #1

GUI #M

Microsoft
Repository

Object Oriented
DatabaseOLE Compound

Storage

Paradigm Definition

Figure 2: Model Builder Architecture

The modeling paradigm definition module contains
the configuration of the graphical idioms and operations
that constitute the given paradigm. It is directly generated
by the metaprogramming layer of the MGA. Since that
layer is implemented by the same MIPS infrastructure,
Figure 2 can be interpreted as the metaprogramming
environment for generating domain-specific MIPS
environments. If the models describe the
metaprogramming environment (i.e. in case of the meta-
metamodels) then the toolkit configures itself (i.e. is self-
booting). The dashed line from one of the model
interpreters to the paradigm definition module illustrates
this concept.

Model interpreters translate the system models into
executable applications or input to COTS analysis tools.
Model interpreters are domain-specific. Currently they are
not configured automatically from the paradigm
description. However, formally specifying the mapping
between the model objects and the runtime objects and
automatically generating the interpreters is an active
research area at the ISIS [6].

The GME provides a COM interpreter interface that
supports the access and modification of the models. It also
provides visualization hooks, so interpreters are able to
provide feedback to the user through messages displayed
in the correct context. An extension to this interface that
will support animation is planned. Implemented on top of
the COM interface, there is a high-level, extensible, C++
interpreter interface. This interface provides all the
common tasks required for model interpreters,
significantly reducing the time and effort required when
writing model interpreters.

Modeling Concepts

 The metaprogrammable model builder works with
the following concepts:

• Paradigms,
• Categories,
• Atoms,
• Models,
• Ports,
• Aspects,
• Attributes,
• Hierarchical containment,
• Connections,
• References, and
• Conditionals.

Figure 3 illustrates the complex relationships among
these constructs. The Paradigm defines the entities and
relationships allowed in the given domain. Related
models are grouped into Categories. Each Category has
its own model hierarchy. Each Paradigm has a fixed set of
Categories. For example, in the parallel instrumentation
domain we could have a signal flow Category containing
the hierarchical signal flow of the application, and a
hardware Category describing the topology of the parallel
DSP network [4].

The basic modeling objects are Atoms and Models.
Atoms are the elementary objects – they cannot contain
parts. Each kind of Atom is associated with an icon and
can have a predefined set of attributes. The attribute

values are user changeable. A good example for an Atom
is an AND or XOR gate in a gate level digital circuit
model.

Models are the compound objects in our framework.
They can have parts and inner structure. The modeling
paradigm determines what kind of parts are allowed in
Models, but the modeler determines the specific type and
number of parts a given model contains (of course,
constraints can always restrict the design space). For
example, if we want to model digital circuits below the
gate level, then we would have to use Models for gates
that would contain transistor Atoms.

This containment relationship creates the hierarchical
decomposition of the Models. If a Model can have the
same kind of Model as a contained part, then the depth of
the hierarchy can be (theoretically) unlimited. Any object
must have at most one parent, and that parent must be a
Model. At least one Model does not have a parent, it is
called a root Model. A good example for this containment
hierarchy is a modeling paradigm for the production flow
of discrete manufacturing, such as a car assembly plant.
The top-level (i.e. root) process Model corresponds to the
whole plant. This Model contains Models corresponding
to different parts of the plant, such as powertrain and
body systems. These in turn contain sub-process Models
and so on, all the way down to the machine level [5].
Hierarchy is an effective method for controlling the
complexity of the models themselves.

Figure 3: Modeling Concepts

The Paradigm can specify that instances of certain
kinds of Atoms appear on the outside interface of the
container model as Ports. The primary purpose of Ports is
to enable making Connections to Models.

Aspects provide primarily visibility control. Every
Model has a predefined set of Aspects. Each part (and
Connection) can be visible or hidden in an Aspect. Every
part (and Connection) has a primary aspect where it can
be created or deleted. The set of Aspects of a Model must
be a subset of the set of Aspects of any one of its parts. In
other words, a part must have the same Aspects as its
parent but it can have extra aspects as well.

The simplest way to express a relationship between
two objects in the MGA modeling environment is with a
Connection. Connections can be made between Atoms,
Atom References (explained later), and Ports. A Model
cannot be connected directly, only through one of its
Ports. Connections can be directed or undirected.
Connections can have Attributes themselves. In order to
make a Connection between two objects they must have
the same parent in the containment hierarchy (and they
also must be visible in the same Aspect, i.e. the primary
Aspect of the Connection). The paradigm specifications
can define several different kinds of Connections. It is
also specified what kind of object can participate in a
given kind of Connection. The signal flow paradigm
provides a good example. Signal flow Models contain
input- and output signal Atoms and they appear as input-
and output Ports on their outside interface. Signal flow
Connections can only be created between input- and
output signals and input- and output ports. Connections
can further be restricted by explicit Constraints specifying
their multiplicity, for instance.

A Connection can only express a relationship
between objects contained by the same Model. Note that a
Root Model, for example, cannot participate in a
Connection at all. In our experience, it is often necessary
to associate different kinds of model objects in different
parts of the model hierarchy or even in different model
hierarchies (Categories) altogether. References support
these kind of relationships well.

References are similar to pointers in object oriented
programming languages. A reference is not a "real"
object, it just refers to (points to) one. In GME, a
reference must appear as a part in a Model. This
establishes a relationship between the Model that contains
the reference and the referred object. Atoms, Models and
references themselves can be referred to. References can
be connected just like regular model objects. Atom (and
Atom reference) references can be connected directly.

Model (and Model reference) references get copies of the
Ports of the referred Model. These Ports can then
participate in Connections. A reference always refers to
exactly one object, while a single object can be referred to
by multiple references.

Connections and references model relationships
between at most two objects. Conditionals can be used to
express association among two sets of objects. The first
set is the so-called Controller. This set must consist of the
same kind of model objects (Atoms, Models or
references). Usually the Controller set has a single
element. The items in the second set are called the parts of
the Conditional. These can be of several different kinds of
objects and Connections (defined in the paradigm
specifications). Both of the sets must have at least one
element.

The name Conditional comes from the most typical
use of this modeling construct. We can describe a
dynamic system by modeling it with a state machine and
associate the states with parts of the system models. In
this case, the states are the Controller objects of the
Conditionals and the parts are the model objects and
connections that are present in the given state.

Being a complex modeling construct, the
visualization and creation of Conditionals are somewhat
complicated. In the Conditional Mode of the GME, the
user must select the Controller object(s) first. All the
model objects and connections that are not part of the
Conditional with the selected set of controls are grayed
out at this point. The user can then add or remove parts by
simply clicking on them. This means that for one kind of
Conditional there can be at most one instance with the
same set of Controllers. Another restriction is that all the
Controllers and parts of a Conditional must have the same
parent and must be visible in the same Aspect.

Some kinds of information do not lend themselves
well to graphical representation. The GME provides the
facility to augment the graphical objects with textual
attributes. Most modeling objects (Atoms, Models,
References, and Connections) can have a set of Attributes.
The kinds of Attributes available are text fields (string
type), multi-line text areas (string type), toggle switches
(boolean type), and menus (integer type).

Graphical Model Editor

There are two ways to achieve metaprogrammability
in the context of a MIPS environment. The first approach
is to automatically generate the code of the different
modules of the environment from the metamodels. The
other is to have generic, i.e. paradigm-independent,
modules that are able to configure themselves from the
metamodels (or, more precisely, from the paradigm
definition, which is an intermediate representation
generated from the metamodels). MGA uses the latter
approach, sacrificing efficiency to a small extent for
added flexibility.

The GME, its native graphical user interface, the
Constraint Manager, the database interface, and the COM
and high-level interpreter interfaces are all paradigm-
independent modules that configure themselves on-the-fly
at runtime. This approach speeds up the design cycle of
domain-specific MIPS environments. The metamodeler
can edit the metamodels, generate the paradigm
specification with the appropriate interpreter, and without
exiting the environment load the generated paradigm and
begin building models. Designing a modeling paradigm is
an inherently iterative process, so speeding up this cycle
can result in large productivity increase. The price to pay
for this flexibility is a slight loss of efficiency.

To illustrate this point, consider a model with an
integer attribute for priority. A generated model builder
would have a data structure for this model with an integer
field for the priority. A paradigm independent tool, on the
other hand, would have a list of generic attributes, each
with a description of its type and value. Priority would be
one element in this list. This requires more storage and
slower access. However, a careful implementation can
minimize these effects.

Graphical User Interface

The native graphical user interface of GME is shown
in Figure 4. The picture shows the GME with a signal
flow paradigm and a simple mode loaded. It shows
Atoms, Models, Ports and Connections in the main
window, the hierarchical decomposition of the Models in
the Model Browser window and textual attributes in the
Attributes windows. Currently the native user interface is
integrated into the GME. Additional user interfaces are
supported through the interpreter interface.

Figure 4: The Graphical Model Editor

Interpreter Interface

The interpreter interface enables model interpreters to
be written in any language that supports COM. The
interface allows full access to the models, to extract
information or to modify them. Visualization hooks are
also provided enabling the interpreter to generate
meaningful visual feedback to the user.

An interpreter can be implemented as either a
dynamic link library (DLL) or executable module. Using
DLLs will result in in-process activation, and
consequently, negligible overhead. Executable
interpreters run considerably slower but have the added
flexibility of being able to initiate interpretation
independently from the GME. Interpreter DLLs are
registered in the Windows registry for the different
paradigms. The actual DLL is not loaded until the user
requests interpretation from the GME and selects the
desired interpreter (in case there are multiple interpreters
registered for the current paradigm).

Despite its flexibility, the COM interface is still quite
low-level. For anything but very simple interpreters, the
interpreter writer has to create complex data structures
and traverse the model hierarchy several times to build
them up. Our experience shows that there is a large set of
common steps among different interpreters in
significantly different paradigms. The high-level, C++
interpreter interface implements these phases of the
interpretation creating a layer above the COM interface.
Figure 5 illustrates the interpreter interface architecture.

Graphical
Model Editor

Visual Basic
Interpreter

Java Interpreter

C++ Interpreter

C++
Interpreter

High-Level
Interface

Figure 5: The Interpreter Interface

The high-level interpreter interface defines its own
generic classes and builds up a so-called builder object
network whose structure closely resembles that of the
models. However, the builder objects facilitate traversing
the models along the hierarchy, connections, or references
much better. For example, it allows following a
connection from leaf to leaf bypassing the hierarchy with
a single function call.

The builder object network is already built by the
time the interpreter receives control. The interface is
easily extensible: the built-in builder classes can be
extended with inheritance. The interpreter interface will
automatically instantiate the user-defined classes.

Constraint Manager

The Constraint Manager is presented with a domain-
specific constraint set. A constraint consists of a model
context definition, a triggering event, a name, an optional
argument list, a priority, and an OCL expression. In the
following example, the constraint states that all the parts
of every model in the SignalFlow paradigm must have a
unique name:

in SignalFlow.Paradigm on demand_event
constraint UniqueNames () priority = 3
"Models must have unique names"

{
parts()->forAll(p1, p2 |

p1 <> p2 implies
p1.name() <> p2.name())

}

The context specifies which Category, Model, and
Aspect must satisfy the given constraint. The triggering
event specifies when a given constraint needs to be
checked. For example, the existence of a given part would
likely be checked at the time the container Model is being
closed. A constraint on a Connection should be checked
when that type of Connection is created. Constraints need

not be tied to any given event. All the constraints can be
evaluated upon demand by the user, as indicated by the
“demand_event” specification in the above example.

The priority is used to control the order in which
constraints are checked. The constraint manager starts by
evaluating the higher priority constraints, enabling the
user to use an iterative approach to fixing possible
violations (notifications arrive from the constraint
manager as soon as a violation is found). This avoids
generating a long list of constraint violation messages
such as some compilers do when in fact a single syntax
error exists.

The description field is used to provide feedback to
the user after a constraint violation. The OCL expression
specifies the actual constraint. A predefined set of
functions allows access to parts, attributes, etc., of the
models.

Conclusions

The ability to rapidly create domain-specific Model-
Integrated Program Synthesis environments makes
Model-Integrated Computing a cost effective approach to
a wide range of applications. The key characteristics of a
metaprogrammable MIPS environment are a rich set of
graphical formalisms, a powerful constraint management
component, and an extensible, modular architecture.
Generic components that are able to configure themselves
according to the given modeling paradigm provide
enormous flexibility. The MGA is gaining widespread
acceptance in the engineering community. MGA
applications are being actively used in different domains
such as Saturn, Boeing, NASA, USAF, and Sandia.

Acknowledgements

This work was sponsored in part by the Defense
Advanced Research Projects Agency, Information
Technology Office, as part of the Evolutionary Design of
Complex Software program, under contract #F30602-96-
2-0227.

References

[1] Sztipanovits, J., et al.: “MULTIGRAPH: An
Architecture for Model-Integrated Computing,”
Proceedings of the IEEE ICECCS’95, pp. 361-368,
Nov. 1995.

[2] Nordstrom, G., et al.: “Metamodeling - Rapid
Design and Evolution of Domain-Specific
Modeling Environments,” Proceedings of the IEEE
ECBS’99 (in review), March 1999.

[3] Karsai, G., et al.: “A Configurable Visual
Programming Environment: A Tool for Domain-
Specific Programming,” Computer, March 1995.

[4] Ledeczi, A.: “Model-Integrated Parallel
Application Synthesis,” Proceedings of the IEEE
ECBS'97, March 1997

[5] Misra, A., et al.: “A Model-Integrated Information
System for Increasing Throughput in Discrete
Manufacturing,” Proceedings of the IEEE
ECBS’97, March 1997

[6] Karsai, G., et al.: “Automatic Model-Interpreter
Generation,” Proceedings of the IEEE ECBS’99 (in
review), March 1999.

